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Abstract. Previously derived expressions for moments of spectral density distribution of an
N -electron Hamiltonian defined in a finite-dimensional model space spanned by a set of spin-
adapted antisymmetrized products of orthonormal orbitals (full configuration interaction space)
are reduced to the low electron density limit, i.e. to the case when the number of electrons is
much smaller than the number of orbitals. The limit of a very large number of electrons is also
considered.

1. Introduction

Most theoretical studies on properties ofN -electron systems have been concerned with
Hamiltonians defined in finite-dimensional model spacesHA spanned by antisymmetrized
products of spinorbitals (see, for instance, Duch 1986). Usually the spaces are assummed
to be spin-adapted, i.e. to belong to specific eigenvalues of the square and of a projection
of the total spin operator,S(S + 1) andM respectively. These spaces are also known
as full configuration interaction(FCI) spaces. A large variety of computational methods
of quantum chemistry (for reviews see Fraga 1992, Diercksen and Wilson 1992) have
been designed to estimate several lowest eigenvalues of theN -electron Hamiltonian matrix
defined in this space. Applicability of these methods is, however, either limited to systems
of several electrons, or restricted to model studies in relatively small FCI spaces. IfK is
the number of orbitals, then the dimension of the FCI space is equal to (Paldus 1974)

D(S,N,K) = 2S + 1

K + 1

(
K + 1

N/2− S
)(

K + 1

N/2+ S + 1

)
(1)

and the FCI problem becomes untractable (even under severe approximations) whenK

exceeds several hundred.
General information about the global structure of the Hamiltonian spectra in FCI spaces

is supplied by moments of the spectral density distribution. If one is interested in several
eigenvalues, the knowledge of the spectral density distribution moments is of a rather
limited help (though even then it may be quite useful, cf Ratcliff 1971, Bancewicz and
Karwowski 1991, Karwowskiet al 1996). However, when one is willing to describe the
whole spectrum, using the moments is about the only practical approach (Porter 1965, Brody
et al 1981, French and Kota 1982, Baucheet al 1988, 1990, Karazija 1991). The moments
form a set of fundamental quantities defining global properties of the spectrum. During
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the last two decades many different algorithms have been derived to evaluate moments and
many techniques have been designed in order to obtain information about spectra from the
knowledge of specific moments. Reviews of the subject have been given, for instance,
by Brody et al (1981), Baucheet al (1988), Bauche and Bauche-Arnoult (1990), Karazija
(1991), Karwowski (1994). Important classical contributions are, among others, due to
Ginocchio (1973), Ayik and Ginocchio (1974), French (1973), Frenchet al (1978), Mon
and French (1975), Changet al 1971, Nomura (1972, 1974, 1985, 1986, 1987, 1988).

The asymptotic case of very large spaces corresponding toK � N is of a special
interest. Its importance is a consequence of its simplicity. A simple, universal, structure of
the spectrum at the limit of largeK, provides a rare possibility of giving exact answers to
questions concerning properties of spectra of the Hamiltonian matrices in FCI spaces. Let
us note however, that we are restricted to discrete sets of orbitals and therefore, even at the
limit of K →∞ these sets are not complete.

Very recently, thesymmetric group approach(SGA) to the theory of many-electron
systems developed by Duch and Karwowski (1985) and the language of the diagrammatic
approach to themany-body perturbation theory(MBPT) of Paldus anďCižek (1976) have
been applied to calculate traces of the number operators (Nomura 1988, Karwowskiet al
1986, Karwowski and Valdemoro 1988), of the density operators (Kutzelnigg 1985, Paldus
and Jeziorski 1988, Planelleset al 1990, Planelles and Karwowski 1990, 1992, 1997) and
of powers of the Hamiltonian operators (Rajadellet al 1993, 1995, Planelleset al 1996).
All these quantities are closely related to the spectral density moments. In the present paper
the K � N andK � N � 1 asymptotic behaviour of the spectral density distribution
moments is discussed.

2. N -electron Hamiltonians and their moments

The N -electron non-relativistic Hamiltonian may be expressed as a sum of two-electron
terms

Ĥ′ = 1

2

N∑
i 6=j

ĥ′2(i, j) (2)

where

ĥ′2(i, j) =
ĥ1(i)⊗ Î(j)+ Î(i)⊗ ĥ1(j)

N − 1
+ ĥ′′2(i, j) (3)

contains one-electron and two-electron operators,ĥ1 andĥ′′2 respectively, and̂I(i) stands for
the one-electron unit operator. The Hamiltonian is defined in an infinite-dimensional Hilbert
space. It is bounded from below and its spectrum, usually, comprises both continuum and
discrete parts. A reasonable approximation to the low-energy part of its discrete spectrum
may be given by the spectrum of̂H′ projected onto a properly selected FCI spaceHA:

Ĥ ′ = P̂ Ĥ′P̂ (4)

where

P̂ =
D∑

L∈HA
|L〉〈L| (5)
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the sum is extended over all orthonormal basis vectors ofHA andD is given by equation (1).
In second-quantization formalism we may express this Hamiltonian as

Ĥ ′ = 1

2

K∑
abcd

2Eacbd{ab|cd}′ (6)

where2Eacbd is the second-order reduced density operator (2-RDO) and

{ab|cd}′ ≡ 〈a(1)c(2)|ĥ′2(1, 2)|b(1)d(2)〉 (7)

are the generalized (i.e. including both one- and two-electron interaction operators) two-
electron integrals. The reduced density operators are related to the reduced density matrices:
their expectation values in a particularN -electron state are equal to the appropriate elements
of the reduced density matrix. Their properties have been discussed, among others, by
Kutzelnigg (1985), Planelleset al (1990), Planelles and Karwowski (1990).

The average energyE
′ = 1

D
Tr H′, whereH′ is the matrix representation of̂H ′, may

be expressed in terms of traces of two effective one-electron operators,Ĵ ′ andK̂′, referred
to as the generalized Coulomb and the generalized exchange operators, respectively. Their
matrix representations are:

J ′ij =
1

K

K∑
k=1

{ij |kk}′ K′ij =
1

K

K∑
k=1

{ik|kj}′ (8)

and their average values (calculated over the one-electron orbital space), are equal to

〈J ′〉 = 1

K

K∑
i=1

J ′ii 〈K′〉 = 1

K

K∑
i=1

K′ii . (9)

Then, according to Karwowski and Bancewicz (1987),

E
′ = B ′J

N(N − 1)

2
− B ′K

[
N(N − 4)

4
+ S(S + 1)

]
(10)

with

B ′J =
K

K2− 1
(K〈J ′〉 − 〈K′〉) (11)

B ′K =
K

K2− 1
(〈K′〉 − 〈J ′〉). (12)

As one can easily see, forK � 1, N � 1 andN � S the average energy becomes
N2

2 (〈J ′〉 − 1
2〈K′〉).

It is convenient to redefine the Hamiltonian matrix by introducing

H = H′ − EI (13)

where I is the unit matrix, so that TrH = 0. As one can check,H is equal to the
representative in the FCI space of the following operator:

Ĥ = 1

2

N∑
i 6=j

ĥ2(i, j) (14)

with

ĥ2(i, j) = ĥ′2(i, j)− Î(i)⊗ Î(j)B ′J − ( ˆi, j)B ′K (15)
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where (î, j) denotes the transposition of the orbital coordinates of two electrons.
Alternatively, matrixH may be obtained by replacing the generalized two-electron integrals
{ij |kl} appearing inĤ′ by (Karwowskiet al 1997):

{ij |kl} = {ij |kl}′ − B ′J δij δkl − B ′K δilδjk. (16)

In this paper, quantities defined in terms of{ij |kl} integrals determined according to
equation (16), are denoted by symbols without primes. Thus, for example,Jij =
1
K

∑K
k=1{ij |kk}, Kij = 1

K

∑K
k=1{ik|kj} andE = 1

D
Tr H. Using this convention leads to

some significant simplifications of the formalism, since〈J 〉 = 〈K〉 = 0 and, in consequence,
E = 0. Then, the central moments ofH are

Mn = 1

D
Tr(Hn). (17)

In what follows we use the integrals defined according to equation (16), unless it is stated
otherwise.

The nth power ofĤ may be expressed as a linear combination of two-electron, three-
electron,. . . , 2n-electron operators:

Ĥn = 1

2n

2n∑
q=2

N∑
i1 6=i2 6=···6=iq

�̂(n)q (i1, i2, . . . , iq). (18)

In particular, forn = 2

�̂
(2)
2 (i, j) = 2ĥ2(i, j)

2 (19)

�̂
(2)
3 (i, j, k) = 4Ŝĥ2(i, j)ĥ2(j, k) (20)

�̂
(2)
4 (i, j, k, l) = Ŝĥ2(i, j)ĥ2(k, l) (21)

and forn = 3

�̂
(3)
2 (i, j) = 4ĥ′2(i, j)

3 (22)

�̂
(3)
3 (i, j, k) = Ŝ[24ĥ′2(i, j)ĥ

′
2(j, k)

2+ 8ĥ′2(i, j)ĥ
′
2(j, k)ĥ

′
2(k, i)] (23)

�̂
(3)
4 (i, j, k, l) = Ŝ[8ĥ′2(i, j)ĥ

′
2(i, k)ĥ

′
2(i, l)

+24ĥ′2(i, j)ĥ
′
2(j, k)ĥ

′
2(k, l)+ 6ĥ′2(i, j)ĥ

′
2(k, l)

2] (24)

�̂
(3)
5 (i, j, k, l, m) = 12Ŝĥ′2(i, j)ĥ′2(j, k)ĥ′2(l, m) (25)

�̂
(3)
6 (i, j, k, l, m, n) = Ŝĥ′2(i, j)ĥ′2(k, l)ĥ′2(m, n) (26)

where

Ŝ = 1

q!

∑
P∈Sq
P (27)

is the symmetrization operator. In the last equation,Sq stands for theq!-element symmetric
group andP is a permutation operator. In a general case, expressing thenth power ofĤ as
in equation (18) requires some combinatorics. One should also remember thatĥ2(i, j) does
not commute withĥ2(i, k) if j 6= k. However, since we are interested only in traces of the
Hamiltonian powers, for simplicity, the products ofĥ′2 which differ by a cyclic permutation
of the operators (as, for example,ĥ′2(i, j)ĥ

′
2(j, k)

2 and ĥ′2(j, k)ĥ
′
2(i, j)ĥ

′
2(j, k)) are treated

as if they were equal to each other.
The operatorĤ n may be expressed in theK-orbital Fock space in two different ways.

The first one, used in our previous studies on the moment evaluation in the FCI space
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(Rajadell et al 1993, 1995, Planelleset al 1996), is obtained by directly taking thenth
power of the second-quantized form ofĤ :

Ĥ n = 1

2n

K∑
a1,a2,...,an

K∑
b1,b2,...,bn

K∑
c1,c2,...,cn

K∑
d1,d2,...,dn

n∏
i=1

2E
aici
bidi
{aibi |cidi}. (28)

From here, using some theorems concerning traces of products of 2-RDOs in the FCI space
(Planelleset al 1990, Planelles and Karwowski 1990) and some Wick-theorem related
combinatorics (Rajadellet al 1993), one may show that

Mn = 1

D

∑
P∈S2n

〈〈P〉〉〈{P}〉. (29)

In this equation

〈{P}〉 == 1

2n

K∑
a1a2...an

K∑
c1c2...cn

{
a1c1, a2c2, . . . , ancn

P̂ [a1c1, a2c2, . . . , ancn]

}
(30)

where

{ a1c1, a2c2, . . . , ancnb1d1, b2d2, . . . , bndn } =
n∏
i=1

{aibi |cidi} (31)

describe the dynamics of the system and are referred to as the interaction factors and

〈〈P〉〉 = Tr

(
12, 34, . . . ,2n− 12n

P̂ [12, 34, . . . ,2n− 12n]

)
(32)

where (
a1c1, a2c2, . . . , ancn
b1d1, b2d2, . . . , bndn

)
=

n∏
i=1

2E
aici
bidi

(33)

describe the dependence ofMn onK,N andS and are known as the propagation coefficients.
The second way of expressinĝHn in the Fock space, commonly used in the statistical

theory of nuclear spectra (Ginocchio 1973, Nomura 1972, 1974, Brodyet al 1981), consists
of two steps. In the first step the Fock-space representation ofĤn is constructed:

P̂ ĤnP̂ = 1

2n

2n∑
q=2

K∑
a1,...,aq

K∑
b1,...,bq

qE
a1a2···aq
b1b2···bq 〈a1a2 · · · aq |�̂(n)q |b1b2 · · · bq〉 (34)

whereqE
a1a2···aq
b1b2···bq is theqth-order reduced density operator (q-RDO) and

〈a1 · · · aq |�̂(n)q |b1 · · · bq〉 = 〈a1(1) · · · aq(q)|�̂(n)q (1, . . . , q)|b1(1) · · · bq(q)〉
is the q-electron integral. In the second step, many-electron integrals〈a1 · · · aq |�̂(n)q |
b1 · · · bq〉 are ‘internally projected’ onto the Fock space. This projection is equivalent to
the conversion of the integrals containing products ofĥ2 operators into linear combinations
of products of the standard two-electron integrals (defined by equation (16)), using the
resolution of the one-electron identity in theK-orbital Fock space:

I(1) =
K∑
i=1

|ai(1)〉〈ai(1)|. (35)
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For example,

〈a1a2|�̂(2)2 |b1b2〉 = 〈a1a2|ĥ2(1, 2)2|b1b2〉

=
K∑
c1c2

〈a1a2|ĥ2|c1c2〉〈c1c2|ĥ2|b1b2〉 =
K∑
c1c2

{a1c1|a2c2}{c1b1|c2b2}. (36)

Using expression (34) one can demonstrate, in the same way as it has been done by
Rajadellet al (1993) in the context of equation (28), that

Mn = 1

2n

2n∑
q=2

∑
P∈Sq
〈4(n)q (P)〉Av〈�(n)q (P)〉Av (37)

where

〈4(n)q (P)〉Av = Kq

D
Tr(qE12...q

P(12...q)) (38)

and

〈�(n)q (P)〉Av = 1

Kq

K∑
a1,a2,...,aq

〈a1a2 · · · aq |�̂(n)q |P(a1a2 · · · aq)〉 (39)

are the average values of theq-RDO and of theq-electron operator̂�(n)q , respectively.
One should stress that equations (29) and (37) are equivalent only when all many-

electron integrals appearing in〈�(n)q (P)〉Av are expressed in terms of the standard two-
electron ones, as in equation (36). From a formal point of view, the RHS and the LHS of
equation (36) are not the same. Therefore, an integral containing products ofĥ2 operators
should be interpreted as a shorthand notation for its internally projected counterpart. In
particular,Ĥn may contain some non-integrable singularities. Imposing the inner projection,
one may assume that the Hamiltonian and the orbital space are defined in such a way that
all the average values defined in equation (39) are finite.

In order to facilitate an easy manipulation with the averages〈�(n)q (P)〉Av of the q-

electron operators containingn-fold products of ĥ2, it is convenient to introduce their
graphical representation. Then,〈�(n)q (P)〉Av is represented by a set ofq horizontal lines
connected byn vertical arcs. Each horizontal line corresponds to an electron and is labelled
by the orbital indices of two orbitals which depend upon this electron coordinates: thebra
index stands to the left of the line and theket one (to the right). An arc which connects the
lines corresponding to electronsi andj describes the operatorĥ2(i, j). Then, for example

〈�(2)2 (P)〉Av ⇔
a2

a1

aj

ai

h(1, 2) h(1, 2)

u
u
u
u (40)

where

〈�(2)2 (I)〉Av = 2

K2

K∑
a1a2

〈a1a2|ĥ2(1, 2)2|a1a2〉 = 2

K2

K∑
a1a2a3a4

〈a1a2|ĥ2|a3a4〉〈a3a4|ĥ2|a1a2〉

= 2

K2

K∑
a1a2a3a4

{a1a3|a2a4}2 (41)

corresponds toi = 1, j = 2 and

〈�(2)2 ((1̂2))〉Av = 2

K2

K∑
a1a2

〈a1a2|ĥ2(1, 2)2|a2a1〉 = 2

K2

K∑
a1a2a3a4

{a1a3|a2a4}{a2a3|a1a4} (42)
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corresponds toi = 2 andj = 1. The transformation

〈�(2)3 ((1̂3))〉Av = 4

K3

K∑
a1a2a3

〈a1a2a3|ĥ2(1, 2)ĥ2(2, 3)|a3a2a1〉

= 4

K3

K∑
a1a2a3a4

〈a1a2|ĥ2(1, 2)|a3a4〉〈a3a4|ĥ2(1, 2)|a1a2〉

= 4

K3

K∑
a1a2

〈a1a2|ĥ2(1, 2)2|a1a2〉 = 2

K
〈�(2)2 (I)〉Av (43)

is illustrated by the following diagram

〈�(2)3 ((1̂3))〉Av ⇔

a3

a2

a1

a1

a2

a3

h(1, 2)

h(2, 3)

u
u u
u

(44)

where the frame corresponds to the projector. By removing the framed part of this diagram
and linking together the remaining parts of the top and bottom lines into a single top line,
we transform diagram (44) into the one presented in equation (40). The operatorsĥ(1, 2)
andĥ(2, 3) do not commute. However, the trace of a product of operators is invariant with
respect to their cyclic permutation. Therefore diagram (44) may be rewitten as

〈�(2)3 ((1̂3))〉Av ⇔

a3

a2

a1

a1

a2

a3

h(2, 3)

h(1, 2)

u
uu

u
(45)

In a similar way one may show that

〈�(2)3 ((
ˆ123))〉Av = 〈�(2)3 ((

ˆ132))〉Av = 2

K
〈�(2)2 ((1̂2))〉Av . (46)

Each of these two cases is not symmetric with respect to an interchange ofa1 anda3 and
therefore in order to prove one of them one has to use diagram (44) and in order to prove
the other one—diagram (45).

3. The low-density systems

Since only systems with a finite (though large) number of particles are considered here,
the conditionsK � N andN/K � 1 are equivalent. We are going to investigate the
behaviour of the spectral density distribution moments in the case ofK � N � n. In
this case, referred to as the low-density limit, allN -electron systems possess some common
features, to a large extent independent of their specific properties. In particular, some effects
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associated with the Pauli principle, as for example, those related to double occupancy of
orbitals, are not essential. This may be easily seen by considering a Hamiltonian in anN -
electron model space defined as the antisymmetric part of theN -fold Cartesian product of
the 2K-dimensional one-electron spin-orbital space, i.e in a space spanned by allN -electron
Slater determinants formed using the set of 2K spinorbitals. The dimension of this space
is equal to

D =
(

2K

N

)
⇒ (2K)N

N !
(47)

where⇒ denotes a transition to the asymptotic form, in which the leading term dependent
upon the quantity approaching the limit (K in this case) is retained. The number of
determinants in whichj orbitals (j = 1, 2, . . . , N/2) are doubly occupied and(K − j)
are singly occupied is equal to

Dj = 2N−2j

(
K − j
N − 2j

)(
K

j

)
⇒ (2K)N−j

2j j !(N − 2j)!
. (48)

If K/N → 0, then

Dj
D ⇒

1

(2K)j

(
N

2j

)
(2j − 1)!! →

{
1 if j = 0

0 if j > 0.
(49)

Hence, in the low-density limit the probability of an orbital being doubly occupied vanishes.
However, some of the Pauli-principle-related properties are retained also in the low-density
limit. For example, according to equation (10), ifK � 1, N � 1 andN � S, then
E
′ ⇒ N2

2 (〈J ′〉 − 1
2〈K′〉). The negative contribution from the exchange operator is a

consequence of the antisymmetry of the space (this contribution would be positive in the
case of a symmetric, i.e. bosonic, model space).

If the one-particle model is valid, i.e. if the electrons may be considered as non-
interacting particles moving in an external potential field then, in the limitK � N , thenth
N -particle central moment of the spectral density distribution is given by (Mon and French
1975, Brodyet al 1981)

Mn =
∑
πn

n!N !

(N − p)!
∏
r

(µr)
pr

pr !(r!)pr
(50)

whereπn is the partition ofn, p is the total number of parts inπ , pr is the number of
times thatr is found inπ andµr is the one-particle central moment. IfK � N � n, the
term with the highest power ofN dominates in equation (50). Therefore, sinceµ1 = 0,
one obtains

Mn =

(n− 1)!!(M2)

n/2 if n is even

n!!
n− 1

6
(M2)

n/2γN−1/2 if n is odd
(51)

whereM2 = Nµ2 and γ = (µ2)
−3/2µ3 is the skewness of the one-particle distribution.

Hence, ifN is sufficiently large, the even moments dominate and the distribution becomes
Gaussian, independent ofµr , i.e independent of the external potential (Mon and French
1975, Brodyet al 1981). This is certainly one of the most remarkable results of the
statistical theory of spectra.

In general, theS-dependence of moments and of related quantities is also retained in the
low-density limit. In order to express this dependence in a compact way, it is convenient
to define a coefficient

Ct(πq) =
∏
r

[t r + (1− t)r ]pr (52)
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where t = x
N

and x = N/2 + S is the numbers of boxes in the first row of the two-
row Young diagram labelling the pertinent irreducible representaion ofSN . If the partition
contains only one cycle with a length larger than 1, then

Ct(1
q−r r) ≡ C(r)t = t r + (1− t)r . (53)

The coefficientCt(πq) is a monotonous function oft and varies from 1 fort = 1 (i.e.
for the high-spin systems) to 2p−q for t = 1

2, (i.e. for the low-spin systems). Using this
notation, the average energy (equation (10)) forK � N � 1 may be expressed as

E = N2

2
[〈J ′〉 − C(2)t 〈K′〉]. (54)

The dimensions of spin-adapted FCI model spaces in the low-density limit depend upon
bothN andS. Since forK � m(

K

m

)
⇒ Km

m!
(55)

the asymptotic behaviour ofD(S,N,K) may readily be obtained from equation (1) as

D(S,N,K)⇒ f (S,N)

N !
KN (56)

where

f (S,N) = 2S + 1

N + 1

(
N + 1

N/2− S
)

(57)

is the dimension of the space ofN -electron spin functions corresponding to givenS andM
(see also Nomura 1987 and 1988).

The asymptotic form of the traces of products of the orbital occupation number operators
n1, n2, . . . , nq , in the FCI space ofN − 2k electrons,K − k orbitals and spinS,

Wq(k) = 〈n1n2 · · · nq〉S,N−2k,K−k (58)

may also be easily obtained from the general formula. According to equation (24) of
Nomura (1988) or equation (17) of Karwowski and Valdemoro (1988) we have

Wq(k) =
[q/2]∑
j=0

Aj(N − 2k, q)
(K − k − q)!
(K − k − j)!D(S,N − 2k − 2j,K − k − j) (59)

where

Aj(N, q) = (−1)j
q!(N − 2j)!

j !(q − 2j)!(N − q)! . (60)

Equations (55) and (56) yield

Wq(0)⇒ KN−q f (S,N)
(N − q)! . (61)

It is interesting to observe that the ratio

R(S,N, k) = Wq−2k(k)

Wq(0)
⇒ f (S,N − 2k)

f (S,N)
(62)

approaches aK-independent limit. IfN � k then, after some simple algebra, we obtain

R(S,N, k)⇒ tk(1− t)k. (63)

In particular, if t → 1
2, i.e. for the low-spin systems,R(S,N, k)→ 2−2k. For the high-spin

systems, ift → 1, we haveR(S,N, k)→ δk0.
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Combining equations (38), (55), (56), (61) and remembering that

Wq(0) = Tr(qE12...q
12...q ) (64)

we obtain the following asymptotic expression for theS- and N -dependent part of
equation (37):

〈4(n)q (P)〉Av ⇒ N !

(N − q)!
Tr(qE12...q

P(12...q))

Tr(qE12...q
12...q )

. (65)

As shown by Planelles and Karwowski (1997), forK � N � q

Tr(qE12...q
P(12...q))

Tr(qE12...q
12...q )

⇒ ε(P)Ct (πq) (66)

whereε(P) is the parity ofP. Therefore, forK � N � n, equations (37) and (65) yield

Mn ⇒ 2−n
2n∑
q=2

Nq
∑
πq

ε(P)Ct (πq)
∑
P∈πq
〈�(n)q (P)〉Av . (67)

Equation (67) may be further simplified by introducing aclass operator

Q(πq) =
∑
P∈πq
P . (68)

This operator commutes with allR ∈ Sq . In effect, evaluation of the average values of�(n)q
may be performed as in the following example. The contribution to equation (67) due to
�̂
(2)
3 (P) associated with a class ofSq defined by a fixed partitionπ3, is given by

∑
P∈π3

〈�(2)3 (P)〉Av = 4

K3

K∑
a1,a2,a3

1

3!

∑
R∈S3

∑
P∈π3

〈a1a2a3|[Rĥ2(1, 2)ĥ2(2, 3)]|P(a1a2a3)〉

= 4

K3

K∑
a1,a2,a3

〈a1a2a3|ĥ2(1, 2)ĥ2(2, 3)]|Q(π3)(a1a2a3)〉. (69)

An extension of this example to a general case is straightforward.

4. Low-density, large-N behaviour of the second and of the third moments

Before discussing the general case, let us first illustrate the procedure by considering the low-
density and largeN limit of the second of the third moments. Apart from its pedagogical
values, this special case is of a particular physical importance and deserves a separate
treatment.

Two-electron integrals contributing to the second moment have been evaluated in
equations (41) and (42). Three-electron contributions are described by the diagram

〈�(2)3 (P)〉Av ⇔

a3

a2

a1

ak

aj

ai

h(1, 2)

h(2, 3)

u
u u
u

. (70)

If i = 3 or k = 1, i.e. if P = (1̂3), ( ˆ123), ( ˆ132), then according to equations (43) and (46),
〈�(2)3 ((P))〉Av, vanish. This is because all〈�(n)q (P)〉Av are finite and therefore the right-hand
sides of equations (43) and (46) approach 0 ifK →∞



Spectral density distribution moments ofN -electron Hamiltonians 2191

Contributions due to the three remaining permutations ofS3 are finite and may be
expressed in terms of the average values of products of the generalized Coulomb and
exchange operators. Then, after some algebra,

〈�(2)3 ((Î))〉Av = 4 〈J 2〉 (71)

〈�(2)3 ((1̂2))〉Av = 〈�(2)3 ((2̂3))〉Av = 4〈KJ 〉. (72)

Let us note that, due to equation (46), contributions toM2 proportional to〈K2〉 vanish in
the limit of K →∞. Contributions toM2 due to the four-electron operators are described
by the diagram

〈�(2)4 (P)〉Av ⇔

a4

a3

a2

a1

a`

ak

aj

ai

h(1, 2)

h(3, 4)

u
u
u
u

(73)

and all vanish forK → ∞ because they are either proportional to〈J 〉 or 〈K〉 (which
are equal to 0) or may be contracted to fewer electron terms similarly as in the case of
equations (43) and (46).

According to equation (67), contributions toM2 due to〈�(2)2 ((P))〉Av are proportional
to N2 while the ones due to〈�(2)3 ((P))〉Av are proportional toN3. Therefore, forN � n

the three-particle terms (equations (71) and (72)) dominate. Using equations (67), (71) and
(72), after some simple algebra, we obtain the following asymptotic expression forM2

M2⇒ N3[〈J 2〉 − 2〈J K̃〉] (74)

where

K̃ = C(2)t K. (75)

The terms contributing to the third moment in the limit ofK → ∞ are described by
the following diagrams:

〈�(3)2 〉Av :
uu uu uu (76)

〈�(3)3 〉Av :

uu uu uu
uu uu
u
u (77)

〈�(3)4b 〉Av ⇔

uu uu uu (78)

〈�(3)4c 〉Av ⇔

uu uu
u
u (79)
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where, for simplicity, all orbital and operator labels have been omitted. The remaining
n = 3 diagrams, i.e.

〈�(3)4a 〉Av ⇔

uu uuuu 〈�(3)5 〉Av ⇔

uu uuuu
〈�(3)6 〉Av ⇔

uuuuuu
(80)

do not contribute toM3 if K → ∞, for the same reason as in the case of�
(2)
4 (diagram

(73)).
If N � n, the dominant contributions are due to�̂(3)4 (similarly as�̂(2)3 dominates in

the case of the second moment). The contributions which do not vanish in the limit of
K → ∞ are either due to the identity permutation or due to transpositions of the indices
corresponding to the pairs of horizontal lines connected by the vertical arcs. Then, in the
case of�̂(3)4b , represented by the productĥ2(1, 2)ĥ2(2, 3)ĥ2(3, 4) non-zero contributions are
due toP = Î, (1̂2), (2̂3), (3̂4), (1̂2), (3̂4). In the case of�̂(3)4c , associated with the product
ĥ2(1, 2)ĥ2(1, 3)ĥ2(1, 4), the non-zero contributions are due toP = Î, (1̂2), (1̂3), (1̂4). In
particular,

〈�(3)4b ((Î))〉Av = 24〈J ĥ2J 〉 (81)

〈�(3)4b ((1̂2))〉Av = 24〈Kĥ2J 〉 (82)

〈�(3)4b ((3̂4))〉Av = 24〈J ĥ2K〉 (83)

〈�(3)4b ((1̂2)(3̂4))〉Av = 24〈Kĥ2K〉 (84)

〈�(3)4b ((2̂3))〉Av = 24〈JKJ 〉 (85)

where

〈J ĥ2K〉 = 1

K2

K∑
a1a2

〈a1a2|J (1)ĥ2(1, 2)K(2)|a1a2〉. (86)

Similarly,

〈�(3)4c ((Î))〉Av = 8〈J 3〉 (87)

〈�(3)4c ((1̂2))〉Av = 〈�(3)4c ((1̂3))〉Av = 〈�(3)4c ((1̂4))〉Av = 8〈JKJ 〉. (88)

Combining these results with equation (67) we obtain the final asymptotic expression for
the third moment

Mb
3 ⇒ 3N4[〈(J − K̃)ĥ2(J − K̃)〉 − 〈J K̃J 〉] (89)

Mc
3 ⇒ N4[〈J 3〉 − 3〈J K̃J 〉] (90)

and

M3 = Mb
3 +Mc

3 (91)

where the superscriptsb andc refer, respectively, to the contributions due to〈�(3)4b 〉Av and
〈�(3)4c 〉Av.
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5. Low-density, large-N behaviour of higher moments

A procedure similar to the one described in the previous section may be performed for
higher moments, except that the number of different terms grows up very rapidly withn

(cf Rajadellet al 1995, Planelleset al 1996). In the low-density limit many terms vanish.
In particular, contributions due to all operators of the form

�̂(a, b, . . . , c) = �̂a(a)�̂b(b) · · · �̂c(c) (92)

wherea, b,. . . ,c are disjoint sets of variables and vanish unless the permutationP does
not intermix the variables belonging to different sets. If�̂ is a product of one-electron
operators, then the only permutation which may give a non-zero contribution is the identity.
If any of the operators in the RHS toMn given by �̂ vanishes. All these statements may
be easily proved in a way similar to that described while deriving expressions forM2 and
M3, in particular when discussing diagrams (73) and (80).uu uuuu uuuu uu

rrr

A

uu uu uuuu uuuu uurrr
B

uu uu
u
uuu uuuu uurrr

C

Figure 1. The dominant terms inMn, whenK � N � n, for n even (case A) and forn odd
(cases B and C).

According to equation (67), forN � n, the dominant term in the expression forMn

corresponds toqmax, the largest value ofq for which �̂(n)q does not vanish. The value of
qmax is equal to the largest number of horizontal lines in the diagrams containingn vertical
arcs, none of them being disconnected. The diagrams withq = qmax are shown in figure 1.

The operator for which the average is represented in figure 1, case A, corresponds to the
case of evenn. Let us setn = 2k. Thenqmax = 3k = 3n

2 and the corresponding operator
may be expressed as

�̂
(2k)
3k (1, 2, . . . ,3k) = (2k)!

2kk!
�̂
(2)
3 (1, 2, 3)�̂(2)3 (4, 5, 6) · · · �̂(2)3 (3k − 2, 3k − 1, 3k). (93)

It is composed ofk disconnected units, each of them described by equation (20) and the
corresponding average—by diagram (70).

Cases B and C of figure 1 correspond to odd values ofn. Let n = 2k + 1. Now
qmax= 3k + 1= 3n−1

2 . The corresponding operator is equal to

�̂
(2k+1)
3k+1 (1, 2, . . . ,3k + 1)
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= (2k + 1)!

2k−13!k!
�̂
(3)
4 (1, 2, 3, 4)�̂(2)3 (5, 6, 7) · · · �̂(2)3 (3k − 1, 3k, 3k + 1). (94)

It is also composed ofk units, k − 1 of them the same as in the previous case. The four-
electron operator̂�(3)4 (1, 2, 3, 4) corresponds in case B to diagram (78) and in case C to
diagram (79).

Another observation deduced from the analysis performed in the previous section is that
the only permutations which may contribute to equation (67) are products of independent
transpositions of the orbital indices associated with a single vertical arc. Then, the
permutations in question, in cases A, B and C, form the following sets:

GA
2k = (I + (12)+ (23))⊗ (I + (45)+ (56))⊗ · · · (I + (3k − 2, 3k − 1)+ (3k − 1, 3k))

(95)

GB
2k+1 = (I + (12)+ (23)+ (34)+ (12)(34))⊗ (I + (56)+ (67))⊗

· · · (I + (3k − 1, 3k)+ (3k, 3k + 1)) (96)

GC
2k+1 = (I + (12)+ (13)+ (14))⊗ (I + (56)+ (67))⊗

· · · (I + (3k − 1, 3k)+ (3k, 3k + 1)). (97)

The classes ofSq we have to consider are [1q ], [1q−22], [1q−422], . . . , [1q−2m2m], where
m = n

2 in case A,m = n+1
2 in case B andm = n−1

2 in case C.
Substituting the above results into equation (67), and after some algebra, we obtain

M2k ⇒ (2k − 1)!![N3(〈J 2〉 − 2〈J K̃〉]k (98)

or more briefly:

MA
2k = (2k − 1)!!M2

k. (99)

Similarly,

M2k+1 = k

3
(2k + 1)!!M3M2

k−1. (100)

As we can see, also in the case of interacting electrons, the energy level density
distribution, in the limit, becomes Gaussian. Indeed,Mn

N3n/2 is N -independent whenn is
even and it is proportional toN−1/2 if n is odd. Therefore, forN � n the even moments
dominate. Besides, the relations between the even moments are the same as in the case of
the Gaussian distribution.

6. Concluding remarks

The study on the low-density limit of the spectral density distribution moments has given
a deeper insight into the structure of the moment-based formalism. The results show that,
in fact, only the second and third moments determine the asymptotic behaviour of the
distribution. This demonstrates a simple and universal character ofN -electron-system
spectra in the low-density limit when the number of electrons is large and the basic
assumption of this model, i.e. an essentially discrete character of the spectrum, is fulfilled.
This applies, for example, to the spacially confined systems.

The one-electron contributions do not appear in our final formulae. They are hidden in
the generalized two-electron integrals (equation (16)) but can easily be recovered explicitly.
It is worth mentioning, that under assumption thatµ1 = 0, the non-vanishing one-electron
contributions are only due to〈J 2〉 and〈J 3〉.
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Another interesting observation is theS-dependence of the asymptotic distribution of
the spectral density. In the limit ofK � N � n this dependence is very simple: all
generalized exchange operators are multiplied by

C
(2)
t =

1

4

(
1+ 4S2

N2

)
. (101)

The value of this coefficient varies from14 for S = 0 to 1
2 for S = N

2 . Then, the spin effects
may effectively enhance the influence of exchange by a factor of 2.
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